Seat No.	Enrolment No.	

THE CHARUTAR VIDYA MANDAL UNIVERSITY

M.Sc. Industrial Chemistry – SEMESTER 2 Summer 2022 EXAMINATION

Common Titles Herit	Pussaggag				
Course Title: Unit					
Course Code: 1013	310203				
Total Printed Page	es: 02				
Date: 05/05/2022	Time: 02.0	0 pm to 04	.00 pm	Maximum Marks	: 60
Instructions:					
Attempt all question		and quarties			
	ght indicate full marks for cumptions wherever necessa		e direkt die		
	e following multiple of				(12)
	sfer, flow of fluids,		handling, filt	ration, distillation,	
	, drying etc. are Impor		TT 1		
	mical operation		Unit operatio		
	process	d.	Chemical pro	ocess	
	otonates nitric acid to fate ion	b.	Nitrite ion		
	yl ion or nitronium ion		None		
The second secon	s firm of M. Biazzi ha			tensive agitation is	
of:			or provided in	onsite agraviour to	
a. Box	type	b.	Plate type		
c. Susp	ended type	d.	Turbine type		
(4) Esterificat	tion proceeds by atta	ick of an	alcohol molec	cule on the acid's	
slightly po					
	onyl carbon		Carbonyl oxy	ygen	
	d carbon		None		
	ion of carboxylic acid	ds to the d	ouble bonds	of isobutylene and	
	ethylene gives:	L	Casandami	ton	
	nary ester	b. d.	Secondary es Tertiary ester		
	on of ketene with alc				
ketene pro		onois to pi	oduce esters e	turing this reaction	
a. Acid		b.	No by-produ	cts	
	oxide	d.	None		
	tans, the alkyl group is				
a. Nitro		b.	Oxygen		
c. Sulfi	***		Fluorine		
	and amylenes are	obtained	from butan	es and pentanes,	
respective	T T				
	ydration		Dehalogenati		
	ydrogenation	d.	Dehydrohalo		
(9) In the alip	hatic paraffin series, t	ne lower m	embers, which	are more volatile,	
exhibit a_	that is absent in				
A CONTRACT OF THE PARTY OF THE	notic effect		Narcotic effe		
c. Hypi	none circu	u.	Antielementi	c effect	

	(10)	Transformation of a primary alcohol to an aldehyde is illustrated as:	
		a. Dehydrogenation b. Halogenation	
		c. Sulfation d. Dehydration	
	(11)	The principle disadvantages of nitric acid as a partial oxidizing agent arises	
		from the tendency to act as a: a. Oxidizing agent b. Sulfonating agent	
		w. O	
	(12)	c. Nitrating agent d. Hydrolyzing agent In the following reaction, the elimination of water is because of the use of	
	(12)	catalyst:	
		$2n CO + (2n+1) H_2 \rightarrow C_n H_{2n+2} + n H_2 O$:	
		a. Sulphur b. $K_2Cr_2O_7$	
		c. KMnO4 d. Cobalt	
Q.2		Attempt Amy Digit of the	(16)
	(1)	Enlist Nitration products of iso-pentane.	
	(2)	Write reaction of olefins with Nitrogen di oxide.	
	(3)	Why catalyst is required for the esterification?	
	(4)	Enlist the products obtained by hydration of olefins.	
	(5)	Give the Menschutkin's comparative study of the relative rates of	
		esterification and the equilibrium constant for primary and allyl alcohol.	
	(6)	Give the types of alkylated compound with suitable example.	
	(7)	Write the reaction for the manufacturing of Ethyl benzene.	
	200	Describe Tubular Reactor used in alkylation with diagram.	
	(8)		
	(9)	Explain the oxidation in a single bubble column.	
	(10)	Write a Synthesis of Hydrocarbons from CO and H ₂ .	
Q. 3		Construction, working and safety measures of Batch and Continuous	(08)
		nitrator.	
		OR	
Q.3		Write the manufacturing process with schematic diagram for m-	(08)
		Dinitrobenzene.	
Q. 4		Write a note on Esters by addition to unsaturated systems.	(08)
ζ		OR	
0 1			(08)
Q. 4		What is hydrolysis? Elaborate different hydrolyzing agent used for	(00)
		hydrolysis.	(0.0)
Q. 5		Write a note on alkylating agent.	(08)
		OR	
Q. 5		Describe various reactors used in alkylation with suitable diagram.	(08)
			(08)
Q. 6		Write a note on oxidizing agent.	(00)
		OR	(00)
Q. 6		Elaborate Methanol production by using synthesis gas with schematic diagram.	(08)

Seat No.	Enrollment No.

THE CHARUTAR VIDYA MANDAL UNIVERSITY

M.Sc. INDUSTRIAL CHEMISTRY

Semester 2 Examination

101310204: Heat Transfer Operations and Stoichiometry Friday, 6th May 2022

Time:	2:00	pm	to	4:00	pm
-------	------	----	----	------	----

Total Marks: 60

Instructions:

Attempt all questions.

Numbers to the right indicate full marks for each question.

Nun	ipers i	o the right indicate full marks for	each question.				
Q-1.		Answer the following mult			[12]		
	1.	An insulator should have					
		a. High thermal conductivity	b. Low thermal cond	luctivity			
		c. Less resistance to heat flo	d. None of the above	е			
	. 2.	What is the unit of heat trans					
		a. W/ m b. J/sec.m.K	c. J/sec.m ² .K	d. W/sec			
	3.	Heating of room by steam ra	adiator is an example of				
		a. Drying b. Conduction	c. Convection	d. Radiation			
	4.	Heat flux is the rate of heat t	transferred per unit				
		a. Time b. Time*Area	c. Area	d. Density			
	5.	Multipass exchangers are us	sed for				
		a. Lowering heat load	b. Its simplicity in co	nstruction			
		c. High heat transfer co-effic	cient d. Reducing pressur	re			
	6.	Baffle spacing should be					
		a.< ID of shell b. >ID of she	II c. < 1/5 ID of shell	d. < ID of tube			
	7.	Fouling factor depend on	Carlo				
		a. Fin length b. Fin thickne	ess c. Density of fluid	d. Scales formed			
	8.	In a shell & tube heat excha	nger,				
		a. Square pitch gives more	heat transfer area than triang	ular pitch			
		b. Triangular pitch gives more heat transfer area than square pitch					
		c. Both square & triangular pitch give same heat transfer area					
		d. Cleaning facility is same in both square & triangular pitch					
	9.	Heat transfer occurs by na	atural convection because of	change in temperature	į		
		causes difference in					
			c. Heat capacity				
	10.	No. of moles reacted to p	roduce product to total no.	of moles of reacted is			
		called					
		a. Yield b. Molarity	c. Selectivity	d. Mole ratio			
	11.	1 poise =gm/cm.sec					
		a. 0.10 b. 1.00	c. 10.00	d. 2.00			
	12.	1 mole of compound =	of compound.				
		a. Moleculer mass	b. gm/moleculer ma	ass			
	•	c. Moleculer mass/gm	d. ams				

Q-2	1. 2. 3. 4. 5. 6. 7. 8. 9.	What is Fourier's law of heat conduction? Write the equation for heat transfer through spherical surface system. Enlist the important requirements of insulating materials. Define the dimensionless numbers used in forced convection calculations. What is LMTD? Write the equation for parallel flow heat exchanger. Discuss the effect of scale formation in heat exchangers. How corrosive fluid is deal in a shell & tube exchanger? Justify it. Write the correct sequence for thermal conductivity of three states of matter. What is heat of mixing?					[16]
Q-3	leg.	Pipe of diameter 40mm with length 1000cm carrying an air at the outer surface temperature at 363K. (p = 1.06 Kg/m³, μ = 0.072 Kg/m.hr, Cp = 1.005 KJ/Kg.K, K = 0.029 KJ/hr.m.K, β = 0.00072). Determine the rate of heat transfer at 303K <i>if pipe is kept Vertical position.</i>					
Q-3			If p	pipe is kept Horiz o	OR ontal position.		(80)
Q-4		Cooled from The interest diameter Oil Water	rom 323K ernal diam r 0.030m a Density (kg/m³) 910 1000	to 307K using ware eter of shell 0.80 nd internal diame Heat capacity (kJ/kg.K) 2.0 4.18	70kg/min.) flowing throughter (36kg/min.) entering a montains 20 tubes, exter 0.027m. K _m = 0.02 kJ/ Thermal conductivity (kJ/min.m.K) 0.012 0.036 Changer for counter flow.	t 288K shell side. ach having outer min.m.K Viscosity (kg/m.min) 2.52 0.06	(08)
		Calculati	e the lengt	n or S&T near exc	OR		(00)
Q-4					for parallel flow		(80)
Q-5		weight is	s in contac essure in	t with its vapour a	nzene, 28% Toluene and at 100°C. Calculate molar Vapour pressure in kPa OR	composition and	(80)
Q-5							(80)
Q-6		the heat transferred in kW. (a = 21.3655, b = 64.28 x 10^{-3} , c = -41.05 x 10^{-6} , d = 9.79 x 10^{-9}) Cp CO ₂ in KJ/KmolK.					(08)
Q-6	×	Determin	ne the hea	t that must be train c = 11.1829 x 10 ⁻⁶	OR flowing. It is heated from the state of t	N_2 (a = 29.5909,	(80)

Seat No.		Enrollment No.	

THE CHARUTAR VIDYA MANDAL UNIVERSITY

M.Sc. Industrial Chemistry – SEMESTER 2 Summer 2022 EXAMINATION

Course Titl	e: Petrochemical Technol	ogy	
Course Co	de: 101310205		
Total Printe	ed Pages : 03		
Date: 07/05/2	022 Time: 02.00 pm	to 04.00 pm Maximum Marks: 6	0
 Number 	all questions. s to the right indicate full marks for each iitable, assumptions wherever necessary		
Q. 1	Answer the following multiple ch Non-associated natural gas con		(12
(2)	a. Ethanec. AromaticPropane and butane are recoveas	b. Methaned. Napthenicered from natural gas and sold	
(3)	a. CNG c. LPG is the first major or	b. PNGd. NGLperation for refining of crude oils.	
(4)	a. Fractional Distillationc. Adsorptionare major reactions	b. Extractiond. Absorptionin catalytic reforming process.	
(5)	a. Dehydrocyclizationc. Hydrocrackingis major reactions in		
(6)	a. Rupture of C-Cc. Rupture of C-NInprocess, part oprovide the process heat.	b. Rupture of C-Sd. None of thesef the coke produced is used to	
	a. Delayed Cokingc. Steam Cracking	b. Fluid Cokingd. VisBreaking	
. (7)	The two major chemicals viz. a from a. Synthesis Gas c. Water Gas	ammonia and methanol are producedb. Natural Gasd. Flue Gas	

	(8)	Carbon disulphide is primarily used for production of a. Nylon b. Rayon c. Freon d. Neon	
	(9)	directs the reaction towards the desired products	
	(10)	 a. Selective Catalyst b. Non-selective Catalyst c. Promoter d. Inhibitor is known as king of petrochemicals 	
ò	(11)	 a. Ethane b. Propane c. Ethylene d. Propylene Synthetic ethanol was produced by indirect hydration of ethylene in the presence of 	
		a. Hydrochloric acidb. Nitric acidc. Phosphoric acidd. Sulphuric acid	
	(12)	Phthalic anhydride is produced by oxidation of a. o-Xylene b. m-Xylene c. p-Xylene d. Toluene	
Q.2	(4)	Attempt any eight of the following.	(16)
	(1) (2)	Define the term Crude Oil and give its classification. What is tar sand?	
	(3)	What is Visbreaking? Enlist its aim	
	(4) (5)	What is reflux ratio in distillation? What is Natural Gas liquid? Enlist its various streams.	
	(6)	Define the terms fluid coking and flexicoking.	
	(7)	Propylene is known as crown prince of petrochemicals. Why? What is synthesis gas?	
	(9) (10)	Differentiate between associated and non-associated natural gas What are chloromethanes? How they are produced?	
Q. 3		What is natural gas? Give its classification and Discuss in detail various techniques of natural gas treatment.	(80)
	74	OR	
Q.3		Define the term Crude Oil. Give composition of crude oil and discuss various methods of crude oil characterization.	(08)
Q. 4		What is Thermal cracking Process? Give its aim, feed and products.	(80)
		Write a detailed note on coking.	
		OR	
Q. 4	*:	What is Catalytic cracking Process? Give its aim, feed and products. Write a detailed note on catalyst used and process for catalytic cracking.	(80)
Q. 5		Present a detailed account of ammonia synthesis starting from synthesis gas including:	(08)
		i. Primary reformer ii. Secondary reformer iii. Shift conversion iv. Methanation and v. Ammonia production	

- Q. 5 Write a detailed note on various chemicals produced from direct (08) reaction of methane
- Q. 6 Discuss various alkylations of benzene and present a detail account (08) of production of styrene.

OR

Q. 6 Discuss nitration of toluene to produce Toluidines and Toluene (08) diisocyanates.

Seat	No.			

Enrolment	No		
	INO.		

The Charutar Vidyamandal University

M.Sc. (Industrial Chemistry), Semester- 2 May - 2022

Subject: 101310208—Air Pollution Control Technology Monday, 9th May – 2022

Time: 02:00 P.M. to 04:00 P.M. Total Marks				
Note:	i) Attempt all the questions. ii) Figures to right indicate full marks. iii) Draw neat diagrams wherever it requires.			
 ·1 1	Answer the following Multiple Choice Questions.		Mark (12)	
	a) Volatile Organic Compounds	c) Volatile Organic Components		
2	,	d) Volatile Organic Composition s one which has a pH less than		
	a) 5.6	c) 6.5		
	b) 4.6	d) 5.8		
3				
	a) SPM	c) SO ₂		
4	b) PAN In inversion cloud layer absorbs	d) NO ₂		
7	downward flow.	meening solar energy with the slow het		
	a) Radiation	c) Subsidence		
	b) smock	d) rain		
5	There are about classes of plume behaviour.			
	a) 5	c) 7		
6	b) 6 Lapes rate is of temperature	d) None of above gradient.		
	a) Negative	c) Positive		
7	b) More . What kind of product was manufactured	d) minimum by the Union Carbide plant in Bhopal, India?		
	a) Paints	c) Pesticide		
8	b) Poison gas When did the Chernobyl nuclear disaster	d) Plastics take place?		
	a) 1980	c) 1982		
9	b) 1985 What was the main reason for the Chern	d) 1986 obyl accident?		
	a) Tsunami	c) Flawed reactor design		
	b) Earthquake	d) Vent failure		

		All the Best		Page 2 of 2		
Q-6		 OR a) Define: Standard Deviation. b) When x̄ = 40, ȳ = 36, σ_x = 6, σ_y = 8 and r = 0 Predict y when x = 21, and predict x when y 	.6 Find the two lines of regree 45.	(08) ession.		
Q-6		Discuss with suitable examples the general rule and combinations of probability to know the nur events	es like several ways, permutati mber of different possibilities o	ons, (08) f certain		
Q-5		Explain the theory of the formation of photochemical smog.		(80)		
Q-5		Briefly explain the causes and effects of the 'London smog disaster' OR		(80)		
Q-4		Discuss in brief the sampling and analytical technique for NO ₂ pollutants.		(80)		
0-4		stability and temperature inversions. OR				
Q-4						
Q-3		OR What is aeroallergen? Describe its sources and its health effects.		(08)		
Q-3		What are the effects of air pollution on human health and farm animals? (08				
Q-2	1. 2. 3. 4. 5. 6. 7. 8. 9.		d) All of these iht) d' on air pollution.	(16)		
∌e e	12.		n, organisation & Graphical			
	11.	a) It is the data collected by a particular person or organisation for his Or her				
	11.	b) Weight	d) Temperature			
		a) Height	c) Blood pressure			
	10. Which of the following is not a discrete variable?					